MAR 1 2 1974

Reprinted from

PHYSICAL REVIEW B

VOLUME 2, NUMBER 11

1 DECEMBER 1970

Effects of Hydrostatic Pressure and of Jahn-Teller Distortions on the Magnetic Properties of RbFeF₃[†]

J. B. GOODENOUGH, N. MENYUK, K. DWIGHT, AND J. A. KAFALAS Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173 (Received 19 June 1970)

The first-order transitions at $T_1 = 40^{\circ}$ K and $T_2 = 87^{\circ}$ K in RbFeF₂ have been measured as a function of hydrostatic pressure and applied magnetic field. It was not possible to observe the $T_N = 102^{\circ}$ K transition with a magnetic-susceptibility measurement. It was found that $(\Delta T_1/\Delta H_a)_p = 0.35^{\circ}/\text{kOe}$, $(\Delta T_2/\Delta H_a)_p = 0.3$ 0.19°/kOe, $(\Delta T_1/\Delta P)_H = 0.18^\circ$ /kbar and $(\Delta T_2/\Delta P)_H = -0.81^\circ$ /kbar. These results correspond to latent heats of 0.006 and 0.04 cal/g at T_1 and T_2 , respectively, and relative volume changes $\Delta V_1/V_1 = 1.5 \times 10^{-6}$, $\Delta V_2/V_2 = -22 \times 10^{-6}$. It is pointed out that a Jahn-Teller distortion to tetragonal (c/a > 1) symmetry in the interval $T_2 < T < T_N$ introduces a strong magnetoelastic coupling. This causes the heavy twinning that has been observed below T_N , and the resulting twinned structure is retained in the entire temperature interval $0 < T < T_N$. In the temperature interval $T_1 < T < T_2$, Rb⁺-F⁻ interactions induce distortions to orthorhombic or tetragonal symmetries that are superimposed on the Jahn-Teller distortion. The orthorhombic distortion is cooperative across twin boundaries caused by the Jahn-Teller distortion and also permits spin canting, which introduces a ferromagnetic component below T_2 . It is shown how the interplay of these distortions plus strong magnetoelastic coupling can explain the appearance of two sets of Mössbauer peaks below T_2 and results in macroscopic ferromagnetic components having cubic symmetry even though the microscopic crystallographic symmetry is "orthorhombic" $(T_1 < T < T_2)$. The Jahn-Teller distortion changes to rhombohedral ($\alpha < 60^{\circ}$) for $T < T_1$; in combination with the existing orthorhombic structure, this produces monoclinic symmetry on a microscopic scale. Nevertheless, it is shown that the macroscopic magnetization retains its cubic symmetry, that the easy magnetization direction changes from $\langle 100 \rangle$ to the $\langle 110 \rangle$, that the apparent moment increases, and that there may still be two sets of Mössbauer peaks.

I. INTRODUCTION

Above its Néel temperature $T_N = 102^{\circ}$ K,¹ RbFeF₃ has the cubic perovskite structure, but it becomes tetragonal (c/a>1) in the interval $T_2 < T < T_N$.² It undergoes first-order transitions at $T_1=40^{\circ}$ K and $T_2=$ 87°K; it exhibits weak ferromagnetism at all $T < 87^{\circ}$ K.³ In the interval $T_1 < T < T_2$, the structure appears to be orthorhombic, and below T_1 it has lower symmetry, probably monoclinic.² The ferromagnetic moment has a preferred direction along the pseudocubic $\langle 100 \rangle$ axes in the interval $T_1 < T < T_2$, along the pseudocubic $\langle 110 \rangle$ axes below T_1 .⁴ It is remarkable that these noncubic crystals exhibit a cubic macroscopic anisotropy of the weak ferromagnetism. A neutron-diffraction study on a polycrystalline sample shows the dominant magnetic structure to be a simple type-G antiferromagnet for all $T < T_N$.⁵ However, Mössbauer measurements below T_2 distinguish two types of iron sites, and this finding was claimed to be incompatible with a simple canting of the spins to produce the weak ferromagnetism.¹

The transition temperatures T_1 and T_2 both vary with applied magnetic field H_a . Wertheim *et al.*¹ obtained a shift of T_2 to 95°K and of T_1 to 45°K in an $H_a=14\ 240$ Oe, corresponding to a $\Delta T_2/\Delta H_a=$ $0.56^{\circ}/\text{kOe}$ and a $\Delta T_1/\Delta H_a=0.35^{\circ}/\text{kOe}$. Testardi *et al.*,² on the other hand, required a field of 4 kOe to achieve a $\Delta T_2\approx 0.5^{\circ}$ K, corresponding to a $\Delta T_2/\Delta H_a\approx 0.125^{\circ}$ K. No discussion was given of the rather striking difference in the two results.

In this paper we report studies of the magnetic properties of $RbFeF_3$ in the vicinity of the first-order transformations as functions of both applied field and hydrostatic pressure. We also present a microscopic interpretation of the magnetic and crystallographic data.

II. EXPERIMENTAL

The powder sample used in these measurements was obtained by grinding a single crystal grown by O'Connor. The starting material was obtained from the reaction of high-purity RbF and FeCl₂ heated in a graphite crucible to 1000°C. RbCl was removed from the product by dissolving in water. Crystals were grown from the melt in a graphite crucible contained in a sealed nickel crucible, with provision for adding a small amount of NH₄HF₂. A sharp temperature gradient provided optimum growth conditions.

The measurements were performed on a vibratingcoil magnetometer used in conjunction with a heliumgas pressure-generating unit. This system permits the direct measurement of magnetic moment while freely varying applied field, temperature, and pressure.⁶

FIG. 1. Changes in the RbFeF₃ transition temperatures T_1 and T_2 as functions of applied magnetic field strength H_a or hydrostatic pressure P.

TABLE I. Parameters of the two first-order transitions in RbFeF3.

<i>T</i> _i (°K)	$(\partial T_i/\partial H)_P$ (deg/kOe)	$(\partial T_i/\partial P)_H$ (deg/kbar)	L_i (cal/g)	$(\Delta V_i/V_i)$ (×10 ⁶)
41	0.35	0.18	0.006	1.5
87	0.19	-0.81	0.04	-22

The magnetization-versus-temperature curve closely approximated that given by Wertheim *et al.*,¹ except that our measured saturation moment at 4.2°K was approximately 14.5 emu/g rather than the 16 emu/g they obtained. This 10% drop can be explained by the fact that our measurements were taken on a polycrystalline sample in fields up to $H_a=12$ kOe, since the anisotropy investigations of Gyorgy *et al.*⁴ indicate that at these applied fields the magnetization is limited to the easy-axis direction closest to the field. The magnetization curve is characterized by a pronounced step at T_1 .

Investigation of the magnetization in the temperature range $90 \le T \le 120^{\circ}$ K and in fields $1 < H_a \le 10$ kOe at both atmospheric pressure and at 5 kbar showed no observable kink in the magnetization-versus-temperature curves in the vicinity of T_N . This accords with the results of Wertheim *et al.*¹ and supports their conclusion that lattice strains produced by crystallographic distortions accompanying short-range magnetic order give rise to a spatial variation of T_N .

Magnetic-moment measurements in the vicinity of the two first-order transitions showed that application of hydrostatic pressure, though shifting T_1 and T_2 , induced no significant change in the magnitudes of the weak ferromagnetic components as a function of (T_1-T) or (T_2-T) , where $T_1 \approx 41^{\circ}$ K in our sample. The variations of T_1 and T_2 with pressure and applied field were found to be linear for pressures 1 < P < 6 kbar and fields $1 < H_a < 12$ kOe. The results of several measurements are shown in Fig. 1. The resultant slopes are listed in Table I. We found a $\Delta T_1 / \Delta H_a \approx 0.35^{\circ} / \text{kOe}$, in good agreement with that implicit in the data of Wertheim et al.1 The measured sharp increases in ferromagnetic moment $\Delta \sigma_1$ and $\Delta \sigma_2$ on cooling through the transitions at T_1 and T_2 were found to be 2.0 and 3.5 emu/g, respectively. The latter value differs significantly from the 5 emu/g obtained by Testardi et al.² Substitution of these values into the Clausius-Clapeyron equations

$$\left(\frac{\partial T}{\partial H_a}\right)_P = -\frac{\Delta \sigma_i}{L_i} T_i \text{ and } \left(\frac{\partial T}{\partial P}\right)_{Ha} = \frac{\Delta V_i}{L_i} T_i \quad (1)$$

permits determination of the latent heats L_i and volume changes ΔV_i associated with each of these transitions. These are also listed in Table I. The negative value of ΔV_2 indicates a volume expansion on cooling through the $T_2=87^{\circ}$ K transition. The relative volume changes $\Delta V_i/V_i$ are seen to be quite small, probably falling